Ozzy Campos

Getting Started in Geospatial

Outline

- 1. Understand Geospatial
- 2. Vector vs. Raster
- 3. Use Cases & Ideas
- 4. Tools and what they do
- 5. Google Earth Engine
- 6. Starting the journey

Understand Geospatial

What is Geospatial Data?

- Geospatial data is data that has a location component
 - Something that ties it to a specific place on Earth

This could be:

- A street address
- GPS coordinates
- A region on a map (like a park boundary or zip code)
- A satellite image showing a forest or city

Why Geospatial Matters

- Geospatial data powers maps and decisions
 - From your phone navigation to global climate models.
- It's used across nearly every field:
 - Environment:
 - Tracking deforestation, pollution, biodiversity
 - Urban planning
 - Analyzing zoning, development, green space
 - Agriculture
 - Monitoring crops and soil health
 - Logistics
 - Optimizing routes, deliveries, supply chains
 - Disaster response
 - Mapping flood zones, wildfires, damage assessment

Two Core Geospatial Disciplines

Understanding geospatial starts with two main formats:

Vector versus Raster

Vector Data

- Vector data represents discrete features
- Three basic types:
 - Points
 - Single locations (e.g. weather stations, bus stops)
 - Lines
 - Paths or networks (e.g. roads, rivers, hiking trails)
 - Polygons
 - Areas or boundaries (e.g. parks, building footprints, farmland)

Map of New York

High Definition Map

Raster Data

- Raster data represents continuous surfaces
 - Values that vary across space.
- Think of it like a photo made of pixels
 - Each pixel covers an area and holds a value.
- That value could be:
 - Visible and near-infrared reflectance in a satellite image
 - Elevation
 - Temperature
 - Vegetation index (NDVI)
- Raster data usually comes from satellite imagery or sensors capturing surface information

Satellite Image (Landsat)

Why This Matters

- These two types of data are the foundation of geospatial work.
- Vector data tells us where things are
 - A forest boundary, a city outline, a sensor location.
- Raster tells us what's happening there
 - How green the forest is, how hot the city is.
- Fundamental Principle: GIS is about bringing these two together
 - Knowing how they fit together is key.

Tools and What They Do

Common Geospatial Tools:

- QGIS Open-source desktop GIS
- ArcGIS Proprietary, but full-featured software for GIS
- Open Street Map Open source, crowdsourced global mapping
- GDAL low-level raster/vector processing
- Leaflet / Mapbox / kepler.gl Interactive mapping
- Python libraries:
 - geopandas for vector
 - rasterio, xarray for raster
 - folium, ipyleaflet for maps in notebooks
- Massive Ecosystem
 - Suggestion: Start with QGIS

Google Earth Engine

- Cloud platform for geospatial analysis
- Free access to huge datasets: satellite imagery, climate, terrain, land cover, etc.
- JavaScript + Python APIs
- Built-in tools for filtering, visualizing, and analyzing imagery
- Key features:
- Petabyte-scale satellite archives (Landsat, Sentinel, MODIS)
- Data Catalog very easy to use
- Run computations across time and space very quickly

Google Earth Engine

Quick Demo

Getting Started

Vast Ecosystem

- Don't try to learn everything
- Use case develop your idea first
 - Then explore what tools and data that you would need
 - Get experience

Questions

- Contact:
 - ozzy@loz.vision